A geometric mean inequality and some monotonicity results for the q-Gamma function

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotonicity Results for the Gamma Function

The function [Γ(x+1)] 1/x x+1 is strictly decreasing on [1,∞), the function [Γ(x+1)]1/x √ x is strictly increasing on [2,∞), and the function [Γ(x+1)] 1/x √ x+1 is strictly increasing on [1,∞), respectively. From these, some inequalities, for example, the Minc-Sathre inequality, are deduced, and two open problems posed by the second author are solved partially.

متن کامل

SOME MONOTONICITY PROPERTIES OF GAMMA AND q-GAMMA FUNCTIONS

We prove some properties of completely monotonic functions and apply them to obtain results on gamma and q-gamma functions.

متن کامل

Some monotonicity and limit results for the regularised incomplete gamma function

Letting P (u, x) denote the regularised incomplete gamma function, it is shown that for each α ≥ 0, P (x, x+ α) decreases as x increases on the positive real semiaxis, and P (x, x + α) converges to 1/2 as x tends to infinity. The statistical significance of these results is explored.

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Monotonicity and Convexity for the Gamma Function

Let a and b be given real numbers with 0 ≤ a < b < a + 1. Then the function θa,b(x) = [Γ(x + b)/Γ(x + a)]1/(b−a) − x is strictly convex and decreasing on (−a,∞) with θa,b(∞) = a+b−1 2 and θa,b(−a) = a, where Γ denotes the Euler’s gamma function.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Inequalities & Applications

سال: 1998

ISSN: 1331-4343

DOI: 10.7153/mia-01-24